The following table summarizes common Laplace transforms that can be used to solve different Laplace transform problems:

Function f(t) Function F(s)=\mathscr{L}\{f(t)\} Laplace transformation Proof
1 \dfrac{1}{s} Check proof!
t^{n} \dfrac{n!}{s^{n+1}},\: n\in\mathbb{Z}_{+} Check proof!
\sin(bt) \dfrac{b}{s^{2}+b^{2}} Check proof!
\cos(bt) \dfrac{s}{s^{2}+b^{2}} Check proof!
e^{at} \dfrac{1}{s-a} Check proof!
t^{n}e^{at} \dfrac{n!}{(s-a)^{n+1}},\quad n\in\mathbb{Z}_{+} Check proof!
e^{at}\sin(bt) \dfrac{b}{(s-a)^{2}+b^{2}} Check proof!
e^{at}\cos(bt) \dfrac{s-a}{(s-a)^{2}+b^{2}} Check proof!
f(t-a)u(t-a) e^{-as}F(s) Check proof!
e^{at}f(t) F(s-a) Check proof!
f'(t) sF(s)-f(0) Check proof!
f''(t) s^{2}F(s)-sf'(0)-f(0) Check proof!
f^{(n)}(t) s^{n}F(s)-s^{(n-1)}f(0)-\cdots-f^{(n-1)}(0) Check proof!
t^{n}f(t) (-1)^{n}\dfrac{d^{n}}{ds^{n}}F(s)
(f\ast g)(t) (-1)^{n}\dfrac{d^{n}}{ds^{n}}F(s) Check proof!
\displaystyle\int_{0}^{t}f(\tau)d\tau \dfrac{1}{s}F(s) Check proof!
f(at) \dfrac{1}{a}F\left(\dfrac{s}{a}\right) Check proof!
f periodic with period T\dfrac{1}{1-e^{-sT}}\displaystyle\int_{0}^{T}e^{-st}f(t)dt Check proof!

Download PDF version of common Laplace transforms: