This test corresponds to a set of 10 questions with multiple choices about the Laplace transform and its inverse.
Question 1:
The Laplace Transform of f(t)=\sin(2t) is
1) F(s)=\dfrac{1}{s^2+2}
2) F(s)=\dfrac{2}{s^2+2}
3) F(s)=\dfrac{1}{s^2+4}
4) F(s)=\dfrac{2}{s^2+4}
5) F(s)=\dfrac{2}{s^2+1}
Question 2:
If f(t)=t^3 e^{4t}, then \mathscr{L}\{f(t)\} is
1) F(s)=\dfrac{3}{(s-4)^{3}}
2) F(s)=\dfrac{6}{(s-4)^{3}}
3) F(s)=\dfrac{6}{(s-4)^{4}}
4) F(s)=\dfrac{6}{(s-3)^{3}}
5) F(s)=\dfrac{6}{(s-3)^{4}}
Question 3:
The inverse Laplace transform of F(s)=\dfrac{3}{(s-5)^2+9} is given by the function f(t) such that:
1) f(t)=e^{5t}\sin(3t)
2) f(t)=e^{5t}\sin(9t)
3) f(t)=e^{5t}\cos(3t)
4) f(t)=e^{5t}\cos(9t)
5) f(t)=e^{3t}\sin(5t)
Question 4:
If F(s)=\dfrac{1}{s^{3}} then \mathscr{L}^{-1}\{F(s)\} is
1) f(t)=t^{2}
2) f(t)=t^{3}
3) f(t)=\dfrac{t^{2}}{2}
4) f(t)=\dfrac{t^{3}}{2}
5) f(t)=\dfrac{t^{2}}{6}
Question 5:
The inverse Laplace of F(s)=\frac{5}{s^2-6s+13} is
1) e^{3t}\sin(2t)
2) e^{3t}\cos(2t)
3) \dfrac{5}{2}e^{3t}\sin(2t)
4) \dfrac{5}{2}e^{3t}\cos(2t)
5) \dfrac{5}{3}e^{3t}\sin(2t)
Question 6:
Let F(s)=\dfrac{8s}{(s^2+16)^2}
1) t\sin(4t)
2) \sin(4t)
3) t\cos(4t)
4) \cos(4t)
5) t\sin(4t)\cos(4t)
Question 7:
The solution of the IVP: \left\{\begin{aligned} y''+y=e^t \\ y(0)=y'(0)=0 \end{aligned}\right., is
1) y(t)=\dfrac{1}{2}(\cos(t)-\sin(t)+e^{t})
2) y(t)=\dfrac{1}{2}(-\cos(t)+\sin(t)+e^{t})
3) y(t)=\dfrac{1}{2}(\cos(t)+\sin(t)+e^{t})
4) y(t)=\dfrac{1}{2}(-\cos(t)-\sin(t)-e^{t})
5) y(t)=\dfrac{1}{2}(-\cos(t)-\sin(t)+e^{t})
Question 8:
If y(t) is the solution of the IVP: \left\{\begin{aligned} y'+2y=f(t) \\ y(0)=0 \end{aligned}\right., where f(t) is the function which graph is given below:

then y(t) is equal to
1) \dfrac{1}{2}[e^{-2t}+1-(-e^{-2(t-1)}+1)u(t-1)]
2) \dfrac{1}{2}[-e^{-2t}+1-(e^{-2(t-1)}+1)u(t-1)]
3) \dfrac{1}{2}[-e^{-2t}+1-(-e^{-2(t-1)}+1)u(t-1)]
4) \dfrac{1}{2}[e^{-2t}+1-(-e^{-2(t-1)}-1)u(t-1)]
5) \dfrac{1}{2}[-e^{-2t}+1-(e^{-2(t-1)}+1)u(t-1)]
Question 9:
The solution of the integro-differential equation \displaystyle y(t)=t-e^{t}\int_{0}^{t}y(u)e^{-u}du is:
1) y(t)=t+\dfrac{t^2}{2}
2) y(t)=t-\dfrac{t^2}{2}
3) y(t)=t^2-\dfrac{t}{2}
4) y(t)=t^2+\dfrac{t}{2}
5) y(t)=t-t^2
Question 10:
If y(t) is the solution of the differential equation y''+4y'+13y=\delta(t-\pi)+\delta(t-3\pi) with y(0)=1,\: y'(0)=0 then
1) y(t)=-\dfrac{1}{3}e^{-2t}\sin(3t)\left[e^{2\pi}u(t-\pi)+e^{6\pi}u(t-3\pi)-3\cot(3t)-2\right]
2) y(t)=\dfrac{1}{3}e^{-2t}\cos(3t)\left[e^{2\pi}u(t-\pi)+e^{6\pi}u(t-3\pi)-3\cot(3t)-2\right]
3) y(t)=-\dfrac{1}{3}e^{-2t}\cos(3t)\left[e^{2\pi}u(t-\pi)+e^{6\pi}u(t-3\pi)-3\cot(3t)-2\right]
4) y(t)=-\dfrac{1}{3}e^{-2t}\sin(3t)\left[e^{2\pi}u(t-\pi)+e^{6\pi}u(t-3\pi)-3\cot(3t)-2\right]
5) y(t)=\dfrac{1}{3}e^{-2t}\sin(3t)\left[e^{2\pi}u(t-\pi)+e^{6\pi}u(t-3\pi)-3\cot(3t)-2\right]
Solutions
Q1: choice 4
Q2: choice 3
Q3: choice 1
Q4: choice 3
Q5: choice 3
Q6: choice 1
Q7: choice 5
Q8: choice 3
Q9: choice 2
Q10: choice 1
We reached the end of this post, If you have any questions, remarks, or detailed solution, please feel free to reach me via email at: admin@laplace-transform.com.